Entity Retrieval

نویسندگان

  • Sisay Fissaha Adafre
  • Maarten de Rijke
  • Erik Tjong
  • Kim Sang
چکیده

Generalizing recent attention to retrieving entities and not just documents, we introduce two entity retrieval tasks: list completion and entity ranking. For each task, we propose and evaluate several algorithms. One of the core challenges is to overcome the very limited amount of information that serves as input—to address this challenge we explore different representations of list descriptions and/or example entities, where entities are represented not just by a textual description but also by the description of related entities. For evaluation purposes we make use of the lists and categories available in Wikipedia. Experimental results show that cluster-based contexts improve retrieval results for both tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تشخیص اسامی اشخاص با استفاده از تزریق کلمه‌های نامزد اسم در میدان‌های تصادفی شرطی برای زبان عربی

Named Entity Recognition and Extraction are very important tasks for discovering proper names including persons, locations, date, and time, inside electronic textual resources. Accurate named entity recognition system is an essential utility to resolve fundamental problems in question answering systems, summary extraction, information retrieval and extraction, machine translation, video interpr...

متن کامل

Searching for Entities When Retrieval Meets Extraction

Retrieving entities inside documents instead of documents or web pages themselves has become an active topic in both commercial search systems and academic information retrieval research. Our method of entity retrieval is based on a two-layer retrieval and extraction probability model (TREPM) for integrating document retrieval and entity extraction together. The document retrieval layer finds s...

متن کامل

Entity Retrieval over Structured Data

Entity retrieval is the problem of finding information about a given real-world entity (e.g., director Peter Jackson) from one or a set of data sources. This problem is fundamental in numerous data management settings, but has received little attention. We define the general entity retrieval problem, then discuss the limitations of current information systems (e.g., relational databases, search...

متن کامل

The Impact of Named Entity Normalization on Information Retrieval for Question Answering

In the named entity normalization task, a system identifies a canonical unambiguous referent for names like Bush or Alabama. Resolving synonymy and ambiguity of such names can benefit end-to-end information access tasks. We evaluate two entity normalization methods based on Wikipedia in the context of both passage and document retrieval for question anwering. We find that even a simple normaliz...

متن کامل

Differences in Document Retrieval and Entity Retrieval: Finding Support Documents with a Learning to Rank Approach

Entity retrieval finds the relevant results for a user’s information needs at a finer unit called ―entity‖. In the entity retrieval, people usually work in this way: find a small set of support documents which contain answer entities, and then further detect the answer entities in this set. In most cases, people treat the support document findings as the conventional document retrieval problem....

متن کامل

MIRACLE's 2005 Approach to Geographical Information Retrieval

This paper presents the 2005 MIRACLE’s team approach to Cross-Language Geographical Retrieval (GeoCLEF). The main goal of the GeoCLEF participation of the MIRACLE team was to test the effect that geographical information retrieval techniques cause to information retrieval. The baseline approach is based on the development of named entity recognition and geospatial information retrieval tools an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007